\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{test chuba md} \hypertarget{analyse_des_forces_dans_une_suspension_de_type_double_whishbone}{}\subsection*{{Analyse des forces dans une suspension de type \emph{double whishbone}}}\label{analyse_des_forces_dans_une_suspension_de_type_double_whishbone} Plan provenant du prototype (jamais construit) de la \href{http://www.automobile-catalog.com/make/maserati/chubasco/chubasco_concept/1990.html}{Chubasco 1990 de Maserati} \begin{verbatim}import numpy as np from math import * def chuba(n, m): "retourne le vecteur position reliant le point n vers le point m" points = [[6.13,-14.10], [8.57,13.10], [39.68,8.52], [47.51,-13.10], [10.02,-14.03], [42.55,20.36], [45.40,12.73], [55.44,16.06], [48.46,-13.28], [0.00,-26.17]] return Vecteur(points[m-1]) - Vecteur(points[n-1]) def unit(theta): "retourne le vecteur unitaire définit par l'angle theta en deg" theta_rad = pi*theta/180. return Vecteur([cos(theta_rad), sin(theta_rad)]) def v(x, y): "retourne un vecteur dont les composantes sont x et y" return Vecteur([x,y]) def module(vect): "retourne la norme du vecteur vect" return np.linalg.norm(vect) class Vecteur(np.ndarray): def __new__(cls, input_array): # Input array is an already formed ndarray instance # We first cast to be our class type obj = np.asarray(input_array).view(cls) # add the new attribute to the created instance # Finally, we must return the newly created object: return obj def __invert__(self): "~ vect normalise le vecteur" norm = np.linalg.norm(self) return self/norm def __mul__(self, arg): "A*B correspond au produit vecoriel" return np.cross(self, arg) \end{verbatim} L'équilibre en rotation de la pièce isolée (avec pivot au point 1) permet d'écrire l'équation: \begin{displaymath} M_{SA} = - M_{BA} \end{displaymath} \begin{displaymath} \overrightarrow{R_{12}} \times \overrightarrow{BA} = - \overrightarrow{R_{110}} \times \overrightarrow{SA} \end{displaymath} où $\overrightarrow{BA}$ est le seul vecteur inconnu, donc calculable! Les conventions d'écriture suivantes sont utilisées: * BA est la force \emph{par} la pièce B \emph{sur} la pièce A et SA, la force par S sur A; * $\overrightarrow{R_{12}}$ est le vecteur position qui va du point 1 vers le point 2. Les outils informatiques de calcul suivants sont disponibles: * {\colorbox[rgb]{1.00,0.93,1.00}{\tt chuba\char40\char49\char44\char50\char41}} génère le vecteur position qui va de la jonction 1 vers la jonction 2 * {\colorbox[rgb]{1.00,0.93,1.00}{\tt \char126AB}} est le vecteur unitaire $\widehat{AB}$ * {\colorbox[rgb]{1.00,0.93,1.00}{\tt AB\char42CD}} évalue le produit vectoriel $\overrightarrow{AB} \times \overrightarrow{CD}$ * {\colorbox[rgb]{1.00,0.93,1.00}{\tt v\char40x\char44y\char41}} donne le vecteur de composantes x et y \begin{verbatim}SA=v(0,1000) SA\end{verbatim} \begin{verbatim}Vecteur([ 0, 1000])\end{verbatim} Comment isoler le module de la force $\overrightarrow{BA}$ dans l'équation précédente? \$$\overrightarrow{R_{12}} \times \overrightarrow{BA} = - \overrightarrow{R_{110}} \times \overrightarrow{SA}$\$ il suffit de dévelloper le vecteur $\overrightarrow{BA}$ comme étant le produit de son module et sa direction: \begin{displaymath} \overrightarrow{BA} = BA \cdot \widehat{BA} \end{displaymath} \begin{displaymath} \overrightarrow{R_{12}} \times (BA \cdot \widehat{BA}) = - \overrightarrow{R_{110}} \times \overrightarrow{SA} \end{displaymath} \begin{displaymath} BA \cdot (\overrightarrow{R_{12}} \times \widehat{BA}) = - \overrightarrow{R_{110}} \times \overrightarrow{SA} \end{displaymath} et alors \begin{displaymath} BA = - \frac{\overrightarrow{R_{110}} \times \overrightarrow{SA}} {\overrightarrow{R_{12}} \times \widehat{BA}} \end{displaymath} en module, et pour le vecteur: \begin{displaymath} \overrightarrow{BA} = - \frac{\overrightarrow{R_{110}} \times \overrightarrow{SA}} {\overrightarrow{R_{12}} \times \widehat{BA}} \widehat{BA} \end{displaymath} où $\widehat{BA}$ apparaît deux fois: il est donc utile de le calculer au préalable. $\widehat{BA}$ est la direction de la force BA et donc parallèle à la pièce B (effort axial pur). Cette direction est définie par les points 3 vers 2. On a alors $\widehat{BA}$ = {\colorbox[rgb]{1.00,0.93,1.00}{\tt \char32r\char51\char50d\char32\char61\char32\char126chuba\char40\char51\char44\char50\char41}} : \begin{verbatim}r32d=~chuba(3,2) # vecteur unitaire en direction de (3,2) r32d\end{verbatim} \begin{verbatim}Vecteur([-0.98933623, 0.14564963])\end{verbatim} Le vecteur force BA \$$\overrightarrow{BA} = - \frac{\overrightarrow{R_{110}} \times \overrightarrow{SA}} {\overrightarrow{R_{12}} \times \widehat{BA}} \widehat{BA}$\$ finalement s'évalue ainsi: \begin{verbatim}BA = chuba(1,10)*SA/(-chuba(1,2)*r32d)*r32d print(BA)\end{verbatim} \begin{verbatim}[-222.43013262 32.7460626 ]\end{verbatim} La force manquante sur la pièce A s'obtient par équilibre de translation: \begin{displaymath} \overrightarrow{SA} + \overrightarrow{BA} + \overrightarrow{CA} = 0 \end{displaymath} \begin{displaymath} \overrightarrow{CA} = -(\overrightarrow{SA} + \overrightarrow{BA} ) \end{displaymath} \begin{verbatim}CA = -(BA+SA) print(CA)\end{verbatim} \begin{verbatim}[ 222.43013262 -1032.7460626 ]\end{verbatim} On parcourt l'assemblage en résolvant les équations de pièce en pièce\ldots{} \begin{verbatim}CA\end{verbatim} \begin{verbatim}Vecteur([ 222.43013262, -1032.7460626 ])\end{verbatim} \begin{verbatim}print(CA)\end{verbatim} \begin{verbatim}[ 222.43013262 -1032.7460626 ]\end{verbatim} \end{document}